AI-Ni-Rh (Aluminum-Nickel-Rhodium)

V. Raghavan

Very recently, [2007Prz] investigated the phase relationships in the Al-rich region of this ternary system and presented partial isothermal sections at 1080, 1000, 900, and 800 °C. Besides the quasicrystalline decagonal phase D, a ternary phase of hexagonal symmetry labeled χ and another phase labeled x of unknown structure were found.

Binary Systems

The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl₃ ($D0_{11}$, Fe₃C-type orthorhombic), Ni₂Al₃ ($D5_{13}$ -type hexagonal, denoted δ), NiAl (B2, CsCl-type cubic, denoted β), Ni₅Al₃ (Ga₃Pt₅-type orthorhombic), and Ni₃Al ($L1_2$, AuCu₃-type cubic, denoted γ'). The Al-Rh phase diagram [2006Kho] depicts the following intermediate phases: Rh₂Al₉ ($D8_d$, Co₂Al₉type monoclinic), Rh_{1-x}Al₃ (orthorhombic, denoted O₁ or ϵ_{16}), RhAl₃ (orthorhombic, denoted O₂ or ϵ_6), Rh₂Al₅(c) (space group $Pm\bar{3}$, cubic, denoted C), Rh₂Al₅(h) ($D8_{11}$, Co₂Al₅-type hexagonal, denoted H), Rh₇Al₃ (monoclinic, denoted V) and RhAl (B2, CsCl-type cubic). Ni and Rh form a continuous face-centered cubic solid solution.

Ternary Phase Equilibria

The decagonal D phase has a basic periodicity of ~0.4 nm. The χ phase forms between Al₇₆Ni₄Rh₂₀ and Al₇₆Ni₁₃Rh₁₁ and has the hexagonal lattice parameters of a = 1.2229 nm and c = 2.7158 nm at the composition Al₇₆Ni₈Rh₁₆. The phase x of unknown structure forms around Al₇₀Ni₁₁Rh₁₉ [2007Prz].

With starting metals of 99.999% Al, 99.99% Ni, and 99.95% Rh, [2007Prz] induction-melted under Ar atm a number of alloys. The alloys were annealed at 1080-800 °C for 24-3168 h and quenched in water. The phase equilibria were studied with scanning and transmission electron microscopy, x-ray powder diffraction, energy dispersive x-ray spectroscopy, and differential thermal analysis at heating/cooling rates of 10-50 °C per min. For each alloy, the phases identified and their compositions were listed. All the structurally related ε phases were clubbed together and labeled ε . The isothermal sections for Al-rich alloys constructed by [2007Prz] at 1080, 1000, 900, and 800 °C are redrawn in Fig. 1-4.

At 1080 °C (Fig. 1), the decagonal D phase is stable around the composition $Al_{71}Ni_{18}Rh_{11}$ and forms tie-lines with ε , Ni_2Al_3 , and liquid. The *x* phase is present around $Al_{70}Ni_{11}Rh_{19}$. Ni_2Al_3 dissolves up to 4 at.% Rh. The ε , C, and V phases dissolve up to 12.5, 10.5, and 3 at.% Ni, respectively. The *B2* phases NiAl and RhAl probably form a

Fig. 1 Al-Ni-Rh isothermal section at 1080 °C for Al-rich alloys [2007Prz]

Fig. 2 Al-Ni-Rh isothermal section at 1000 °C for Al-rich alloys [2007Prz]

continuous solid solution (denoted B2), which extends up to 60 at.% Al [2007Prz].

At 1000 °C (Fig. 2), the D phase is not stable. The third component solubility in ε and Ni₂A₃ has slightly increased, whereas it remains almost the same in C, V and x phases.

Fig. 3 Al-Ni-Rh isothermal section at 900 °C for Al-rich alloys [2007Prz]

The low-temperature phase H has appeared. At 900 °C (Fig. 3), Rh₂Al₉ is present and dissolves up to 2 at.% Ni. The C and V phases occur only in the ternary region and have ranges of \sim 3-9 and \sim 1-3 at.% Ni, respectively. The χ phase is present and has a Ni range of 5-9 at.%. At 800 °C (Fig. 4), the ε range is up to 17 at.% Ni. NiAl₃ is present and dissolves up to 3 at.% Rh. The homogeneity range of χ increases to 4-13 at.% Ni. The C phase region shrinks to a narrow strip between Al₆₉Ni₆Rh₂₅ and Al₆₉Ni₈Rh₂₃. The *x* phase is not stable at this temperature [2007Prz].

Fig. 4 Al-Ni-Rh isothermal section at 800 °C for Al-rich alloys [2007Prz]

References

- 1993Oka: H. Okamoto, Al-Ni (Aluminum-Nickel), J. Phase Equilib., 1993, 14(2), p 257-259
- 2006Kho: V.G. Khoruzhaya, K.E. Kornienko, P.S. Martsenyuk, and T.Ya. Velikanova, Phase Equilibria in the System Al-Rh, *Poroshk. Metall.*, 2006, (5-6), p 48-56, in Russian; TR: *Powder Metall. Met. Ceram.*, 2006, 45(5-6), p 251-258
- 2007Prz: B. Przepiorzynski, S. Mi, B. Grushko, and M. Surowiec, An Investigation of the Al-Ni-Rh Phase Diagram between 50 and 100 at.% Al, *Intermetallics*, 2007, 15, p 918-928